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Abstract 

Growing demand for palm oil is driven by increasing human population, income growth as well as biodiesel stimulation 
programs. Covering an area of over ten million ha in Indonesia, palm oil production is also one of the most important sources of 
crop residues while processing generates large amounts of wastewater. Cultivation and processing of this crop are considered as 
potentially large sources of emissions. Improving environmental impacts of the palm oil production can help to reduce existing 
emissions while increasing yield and generating surplus energy and farm income. However, area expansion for oil palm 
plantation is perceived as closely linked to illegal logging, deforestation and diminishing biodiversity. Apart from ensuring 
sustainable land use change, the use of residues is the most important criterion in ensuring sustainable palm oil. It is important to 
note that there are trade-offs (e.g. between maximizing bio energy production, reducing environmental impacts other than 
greenhouse gases (GHG), and sustaining soil fertility). Nitrogen (N) losses in palm oil production systems are a major 
environmental and economic issue. Unfortunately, there is little comprehensive knowledge on how to calculate N-budgets in oil 
palm plantation in order to optimize fertilization, taking into account N-leaching and N-gaseous emissions. Land use, soil-carbon, 
N-emissions and biodiversity are key aspects of life cycle assessment (LCA) of palm oil production systems and they pose a 
number of methodological questions. 
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1. INTRODUCTION 

Growing demand for palm oil is driven by increasing 
human population, income growth as well as biodiesel 
stimulation programs, and the demand is likely to increase 
in coming years up to an added 12 Mha area by 2050[1], i.e. 
+64% compared to current surface area (18.7 Mha)[2]. 
Global production of palm oil have more than doubled 
since 2000[3, 4]. Malaysia and Indonesia produce 
approximately 87% of the global palm oil[2, 5]. Indonesia is 
the main palm oil producer and exporter. It exports 
approximately 70% of its palm oil and 87% of the domestic 
consumption is used as food[6]. The demand for palm oil 
and palm kernel oil is fast growing. The world population 
is currently estimated at 7 billion and will further increase 
to 8 billion in 2025 and to 9.6 billion by 2050. Total annual 
vegetable oil demand is predicted to double between 2010 
and 2050, from 120 to 240 million metric tons. As for palm 
oil, total demand is projected to increase from the current 
level of 51 million tons to 75 million metric tons by 2050[7]. 
Matching the predicted demand can be achieved by area 
expansion and/or yield increase. In Malaysia only 0.6 
million ha are available for additional oil palm plantations, 
while the Indonesian government's own land capability 
survey indicated that up to 24.5 million hectares are 
suitable for oil palm cultivation.  

Demand for electricity is expected to triple between 
2011 and 2035 in Indonesia. In the long-term, depleting oil 
resources may lead to dedicated oil palm plantations in 
producing countries to ensure national energy security. 
National regulation No. 25/2013 establishes a mandatory 
utilization framework in the transportation, industrial, 
commercial and power generation sectors for biodiesel, 
bioethanol and bio-oil from 2009 to 2025. Due to this 
regulation, Indonesian biodiesel consumption increased 
from 0.13 million liters in 2009 to 0.5 million in 2013 and 
is projected to reach more than 9 million liters in 
2016[8].There is still a huge gap between national supply 
and demand for biodiesel through 2025.  

Palm oil is the dominant estate crop and major 
contributor to economic development in some regions of 
Indonesia and Malaysia[9]. The cultivation and harvesting 
of oil palm is labor intensive, and provides a significant 
fraction of jobs in many rural areas, employing 
approximately 4 million Indonesia workers. Given the 
importance of palm oil to the national economy, the policy 
on renewable energy is closely linked with its development, 
particularly as a way to improve living standards and 
welfare in rural areas. 

The oil palm is credited with its high oil yield per unit 
area, the average oil yield per hectare is 3.7 metric tons of 
palm oil compared to 0.6 metric tons rapeseed oil and 0.36 
metric tons soya oil[10]. The major products from palm oil 
mills are palm oil, palm kernel oil and palm kernel meal. In 
addition, a number of residues streams are generated that 
are frequently considered and treated as waste rather than 
resources. The use of these residues is a very critical 
criterion in ensuring sustainable palm oil[11]. Residue 
management is one of the key factors for GHG emission 
reduction of the palm oil industry[12]. Reducing GHG 
emissions all along the production chain can help to reduce 

global impact, while generating additional energy and farm 
income at the local level. 

Indonesia's plantation sector has come under further 
scrutiny in the 2010s in the wake of public campaigns led 
by some NGOs, like that of Greenpeace blaming palm oil 
for the destruction of forest and orangutan habitats, and 
later on in reaction to severe forest-burning in Sumatra that 
caused one of Southeast Asia's worst air-pollution crises, 
with record levels of smog blanketing neighboring 
Singapore and Malaysia. Area expansion for oil palm 
plantation is perceived as closely linked to illegal logging, 
deforestation, forest fires and biodiversity losses[7]. When 
replacing tropical forests, new palm plantations provoke the 
killing of endangered species, uprooting of local 
communities, and release of huge amounts of GHG[13]. 
More recently primary forests are protected, hence new 
palm oil plantation are installed on – so called – marginal 
land such as degraded land, riparian zones and peat land. 
Furthermore, the potential competition for palm oil 
between food, feedstock for chemicals and biodiesel 
applications has given way to a controversial world-wide 
debate[14-17].  

Life Cycle Assessment (LCA) is a suitable approach 
to assess potential environmental impacts of a commodity 
chain, including impacts from land use and land use change 
up to those related to waste management. It allows for 
identifying improvement options along the whole chain but 
also trade-offs. Trade-offs may notably exist between 
maximizing production, reducing environmental impacts, 
and sustaining soil fertility. It is challenging to identify the 
best environmental option when conflicting aims should be 
fulfilled, particularly when it is difficult to get robust 
results due to persisting methodological challenges. This 
paper explores some of the most critical methodological 
challenges in LCA of palm oil production systems 
following the four steps of LCA, i.e. goal and scope, life 
cycle inventory, life cycle impact assessment and result 
interpretation. 

2. METHODS 

2.1. Goal and scope 
Humanity faces a number of challenges at the same 

time, e.g. food supply for a growing population, reducing 
GHG to combat climate change, release of reactive 
nitrogen species, land use changes and loss of biodiversity 
to name just a few[18, 19]. Some of them are interrelated, e.g. 
loss of biodiversity is driven by invasive species, land use 
change, climate change, eutrophication and acidification[20].  

The LCA framework allows assessing potential 
environmental impacts of product systems while taking into 
account various interventions and impact categories at a 
glance. This holistic approach is paramount when 
investigating those global challenges and the contribution 
of human interventions in the view of selecting best 
alternatives and reduce human impacts. However, in 
practice, many LCA studies focus on a reduced number of 
potential environmental due to various methodological and 
data constraints. In the case of palm oil, LCA studies 
frequently focus on the use for energy purposes, and hence 
on climate change and fossil resource depletion impacts. 
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Although these two are important, they are insufficient for 
quantifying other environmental pressures such as 
eutrophication, acidification, human health effects, etc.  

Perennial crops such as oil palms accumulate carbon 
during their lifetime (25–30 years). Henson showed that 
mature oil palm on coastal soil in Malaysia caused a net 
carbon fixation of 11t ha−1 year−1 based on the eddy 
covariance technique[21]. This fixation rate will vary 
depending on the plantation age and management and do 
not represent an actual net carbon fixation in the biosphere. 
Indeed, a large proportion of the assimilated carbon is 
exported to the oil mill[22]. The temporary storage of carbon 
in trunks might improve the GHG balance of palm 
plantations[23], but there is no generally accepted method to 
quantify temporary carbon storage[24]. Main used and 
reproduced guidelines are those from IPCC[25]. Further 
guidelines developed on the same basis, such as PAS2050 
[26] or the European Renewable Directive[27], all consider 
potential carbon storage in biomass as long as it represents 
a stable stock at equilibrium for at least 20 years. However, 
the ways those stocks are calculated and stock changes 
modeled still greatly vary across methods and published 
studies. The accounting of soil organic matter and its 
potential contribution to several impact categories in LCA 
is the subject of ongoing discussions and development[28, 

29]. Whether or not palm oil plantations are a net sink or 
source of carbon depends on the soils, climate, cultivation 
and residue management practices, but also on the history 
of the site especially land use changes[22, 30].  

Frequently, only the productive area of the plantation, 
and the associated fresh fruit bunches (FFB) yield, is 
considered. However, practices and performances of a 
perennial cropping system evolve all over the crop cycle. 
The modeling choices to account or not for the whole 
perennial cycle influence LCA results[31]. LCA of perennial 
crop and products should hence account for the whole cycle 
through the collection of data representative for the 
different crop stages[32]. The whole life cycle of oil palms 
includes the nursery stage (3 month in pre-nursery and 9 
month in main nursery) and the early growing stage of 
immature palms (2 – 3 years), in addition to the productive 
harvest period[33]. The early growing stages account for 10 
– 15% of the entire plantation cycle. Considering the whole 
growing cycle is particularly relevant for nitrogen losses[34] 
and hence for the LCI.  

2.2. Life Cycle Inventory (LCI) 
Specific LCI data, e.g. influence of plantation 

management practices, nitrogen budget of oil palms, 
residue treatment, etc. are frequently missing, which is a 
current issue in tropical crop LCA[35]. The lack of 
representative data is accentuated by the concomitant lack 
of institutionalized detailed agricultural census in some 
main producing countries and the great diversity in oil palm 
practices observed in the field[36, 37]. Nevertheless, the 
available LCI data for oil palm systems has increased in the 
past decade with the growing number of LCA studies 
driven by environmental concerns notably due to oil palm 
area expansion. Land use change and peat oxidation lead to 
severe damage to the environment in terms of both 
biodiversity loss and GHG emissions. Several studies 
showed the critical impact of various land use change 

scenarios on the palm oil GHG[38,39]. A proper 
identification of land use changes, from which types of land 
and land cover and to which extent, and subsequent land 
use fluxes and related emissions is therefore very critical. 
Assessing the impact of oil palm area expansion requires 
being able to identify the land use changes and land use 
change impacts, as well as the impact of oil palm land use, 
e.g. the impact on soil or carbon sequestration. Impacts of 
land use and land use changes are highly sensitive to soil 
type and climate conditions so that site or regional-specific 
assessment is required to cover this aspect sufficiently. 
However, the development of regional-specific LCI 
methods is hampered by the lack of regional and site-
specific data. Moreover, there is still a lack of consensus on 
the methodology to address land use change history, carbon 
stock accounting, fluxes and therefore a lack of adequate 
and representative site-specific data sets.  

In the past 20 years, 95% of the Indonesian oil palm 
production area was in Sumatra and Kalimantan and 
increasingly cultivated in peat lands[40]. Tropical peat land 
stores a huge amount of carbon, roughly 7000 tons Cha-1 in 
below-ground biomass[41] and are highly vulnerable to 
natural and human disturbances. Under normal weather 
conditions, peat land in Indonesia is almost entirely 
waterlogged. However, peat land must be drained through 
hydrological engineering for oil palm planting. The water 
level is the main control on greenhouse gas fluxes from 
tropical peat soils. Crouwenberg et al. calculate emissions 
of at least 9 t CO2 ha-1a-1 and considered that as 
conservative estimate because the role of oxidation in 
subsidence and the increased bulk density of the uppermost 
drained peat layers are yet insufficiently quantified[42]. 
Jauhiainen et al. calculated an average minimum 
heterotrophic respiration emission rate of 80 t CO2 ha−1 a−1 
at an average water table depth of 0.8 m, in peat land with a 
thickness greater than 4 m, for a peat surface covered by 
vegetation and with limited fertilizer applied only in the 
first year after planting[43]. The decomposition of biomass 
due to the reduced water table goes along with nitrous 
oxide emissions. Melling have measured N2O emissions 
between 1.1 and 5.2 kg N2O ha-1 a-1 in different tropical 
ecosystem[44] and Jauhiainen 1.6 kg N2O ha-1 a-1on drained 
tropical peat soil[45]. CO2 counts for more than 90% of 
GHG emissions from drained peat soils but there is still a 
considerable uncertainty concerning the impact of various 
water level management practices for GHG emissions[39]. 

The development of several LCIA-methodologies has 
created confusion partly due to differing results even for 
the same midpoint or endpoint indicators. Several 
areas/indicators (soil property change, ecotoxicity, 
biodiversity, etc.) are still under development and 
consequently not fully matured. 

Land use causes various chemical, physical and 
biological changes to soil properties and functions such as 
life support or nutrient cycling. The cause-effect chains 
from land use are shown in Fig. 1. Despite recent 
developments in the LCA community, there is not yet any 
comprehensive impact assessment of the various branches 
of the cause-effect chains implemented in LCIA[53-56]. 
Particularly impacts related to co-variations in the 
connected physico-chemical and biological soil properties 
and soil functions are hardly addressed in LCIA. Moreover, 



Stichnothe et al. / IJoLCAS 1 (2) (2017) 1-9 

4 

 

physical and chemical changes of surface and soil have 
further effects on flora as well as fauna and hence affect 
biodiversity within and above the soil. The accounting of 
land use impacts on soil is very critical for oil palms given 
the potential peculiarities of perennial crops compared to 
annual ones and given the various potential scenarios of 
palm oil mill residues reuse, including competitive ones 
such as the field application or burning of EFB or POME 
(i.e. flaring of POME methane). Residues of palm oil mills 
returned to the plantation may not only reduce GHG 
emissions but also preserve resources as it reduces the 
mineral fertilizer demand. In addition, the application of 
residues or residue products such as EFB or compost on 
palm oil plantations has further benefits. These include 
notably the temporary storage of soil carbon, improvement 
of soil quality and protection from soil erosion. These 
aspects are not currently part of the life cycle impact 
assessment[12] due to still limited knowledge in order to 
model all potential correlated processes and impacts. In 
order to design the best environmental friendly scenarios of 
residues and global plantation managements, a proper 
modeling of impact onto the soil is though crucial. 

The management of residues from palm oil mills is 
paramount to emission reduction and nutrient 
recycling[48,49]. Particularly the GHG emission depends on 
the residue/waste management. The way residues are 
treated in LCA influences allocation choices and the 
environmental burden they carry along. Those choices 
further influence the final LCA results[50]. Given the 
diversity of residues generated from palm oil production 
(Empty Fruit Bunches (EFB), fibers, shells) and their great 
amounts (e.g. Palm Oil Mill Effluent (POME)), there exist 
very diverse ways to reuse these products including various 
processes and potential impacts. Biogas production from oil 
palm residues is associated with a very favorable GHG 
budget[39]. Closed tank digestion prevents spontaneous 
methane emissions from empty fruit bunch decomposition 
as well as commonly applied open POME ponds. One 
cubic meter of POME can cause up to 12 m³ methane 
emissions, equal to approximately 200 kg CO2-eq. As worst 
case EFB is dumped which cause GHG-emissions 
equivalent to 1,000 kg CO2-eqt-1[8, 12]. POME and EFB can 
also be co-composted, which can lead to emission 
reductions as well as benefits to soil quality[49]. Indeed, 
EFB are generally applied back in the plantation in order to 
maintain soil fertility through increasing organic matter in 
fragile soil[51, 52]. However, the impacts of compost or EFB 
on the soil quality, as well as the upstream emissions 
during the composting process in dependence of different 
composting practices are still poorly quantified and further 
data collection is needed in order to better account for these 
practices within both LCI and LCIA. 

2.3. Life Cycle Impact Assessment (LCIA) 
The development of several LCIA-methodologies has 

created confusion partly due to differing results even for 
the same midpoint or endpoint indicators. Several 
areas/indicators (soil property change, ecotoxicity, 
biodiversity, etc.) are still under development and 
consequently not fully matured. 

Land use causes various chemical, physical and 
biological changes to soil properties and functions such as 

life support or nutrient cycling. The cause-effect chains 
from land use are shown in Fig. 1.   Despite recent 
developments in the LCA community, there is not yet any 
comprehensive impact assessment of the various branches 
of the cause-effect chains implemented in LCIA[53-56]. 
Particularly impacts related to co-variations in the 
connected physico-chemical and biological soil properties 
and soil functions are hardly addressed in LCIA. Moreover, 
physical and chemical changes of surface and soil have 
further effects on flora as well as fauna and hence affect 
biodiversity within and above the soil. The accounting of 
land use impacts on soil is very critical for oil palms given 
the potential peculiarities of perennial crops compared to 
annual ones and given the various potential scenarios of 
palm oil mill residues reuse, including competitive ones 
such as the field application or burning of EFB or POME 
(i.e. flaring of POME methane). Residues of palm oil mills 
returned to the plantation may not only reduce GHG 
emissions but also preserve resources as it reduces the 
mineral fertilizer demand. In addition, the application of 
residues or residue products such as EFB or compost on 
palm oil plantations has further benefits. These include 
notably the temporary storage of soil carbon, improvement 
of soil quality and protection from soil erosion. These 
aspects are not currently part of the life cycle impact 
assessment[12] due to still limited knowledge in order to 
model all potential correlated processes and impacts. In 
order to design the best environmental friendly scenarios of 
residues and global plantation managements, a proper 
modeling of impact onto the soil is though crucial. 

The modeling of land use impacts on biodiversity is 
considered a priority in LCA. Biodiversity can be 
considered at different levels, ecological diversity 
(ecosystems), population diversity (species) and genetic 
diversity (genes). The quantification is complex and many 
diverging approaches have been proposed in an expanding 
literature on the topic[57]. Some species are highly sensitive 
to habitat loss and live in only native habitats, while other 
species show partial or total tolerance to human-modified 
habitats; still other species even benefit from the conditions 
found in human-modified habitats. For biodiversity, the 
species-diversity oriented Potentially Disappeared 
Fraction of species (PDF)-concept is seen as the only 
really operational concept among those investigated, 
integrating the potentially lost fraction of natural species 
over area and time[58]. Biodiversity loss can be linked to 
four midpoint indicators (land use, ecotoxicity, 
acidification and eutrophication) but also to the endpoint 
indicator “Natural Environment”. For Natural 
Environment, the aim is to quantify the negative effects on 
the function and structure of natural ecosystems as a 
consequence of exposure to chemicals or physical 
interventions. It is proposed to focus endpoint modeling for 
the Natural Environment on the biodiversity of the exposed 
ecosystems and, more specifically, on the diversity within 
the ecosystem based on population diversity (i.e. diversity 
among species)[58]. 

Curran et al. evaluated the performance of 31 models 
for assessing the biodiversity loss from both the LCA and 
the ecology/conservation literature, they conclude that there 
is room for improvement and suggest working on a 
“consensus model” by weighted averaging of existing 
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information in order to complement future development[57]. 
Currently there is no agreed and harmonized approach how 
to quantify the spatially distinct environmental impacts of 
land use change in palm oil producing countries. 

Spatially explicit methods are needed in life cycle 
assessment to accurately quantify impacts of products and 
processes. Chaudhary et al. use the country-side 
species−area relationship to quantify regional species loss 
due to land occupation and transformation[59,60]. They 
combine regional characterization factors with vulnerable 
scores to calculate global characterization factors. Oil 
palms grow in tropical areas and tropical biomes have 
higher characterization factors than those of boreal biomes 
mainly because of the higher species richness per area. 

Finally, dry peat soils are prone to subterranean fire. 
Subterranean fires smolder, emitting thick white smoke 
laden with hazardous particles[61]. Such fires in Indonesia 
became an international health concern in 2013. A similar 
catastrophe had already happened in 1997 due to long dry 
period. They cause smog, haze and respiratory problems as 
far as Malaysia and Singapore. Those were obviously 
extreme events, that by definition, have the potential of 
high health and other environmental impacts but whose 
occurrence is rare. The frequency, intensity and persistence 
of such extreme events are still important characteristics for 
deriving characterization factors, e.g. for human toxicity. 
Such information requires dedicated modeling work in 
perspective with land use change prospective and climate 
models. 

 

Fig.1. Simplified cause effect chain of land use (change)1 
 

2.4. Results interpretation  
Results have to be discussed with respect to the 

particular goal and scope of the study, which in return also 
define data requirements but also the limitation of the 
analysis. Describing the consequences of modeling choices 

                                                        
 

such as total or productive plantation area, LCI models 
(IPCC, crop model, etc.), time period (year, plantation 
cycle or several plantation cycles) considered, etc. is crucial 
as all previous mentioned factors influence the results. The 
spatial dimension is given by the scope of the study, e.g. a 
specific plantation, a particular region or the national 
production. The obtained results are just valid for the 
system investigated. Although this may seem obvious, 
results are frequently generalized without proper evidence. 

Palm oil mills are multi-output systems and the 
question is which product gets how much of the emissions. 
System subdivision is hardly possible as palm kernels 
cannot be obtained separately. System expansion is 
possible but difficult to interpret and the substitution 
method is prone to arbitrary choices for co-product 
substitutes, e.g. does kernel meal substitute soya meal or 
wheat? Both is possible but the results would differ. 
Emissions can be allocated among the various products, 
e.g. crude palm oil, nuts or following products palm kernel 
oil and palm kernel meal using physical (mass, energy 
content, nutrient content, etc.) or economic allocation. 
Obviously also this choice will alter the results for a 
particular product. It is highly recommended to conduct a 
sensitivity analysis for the different options as well as an 
uncertainty analysis before discussing results. The 
epistemic uncertainty analysis is particularly crucial for 
LCI field emission models that are not well parameterized 
for tropical perennial crops such as oil palm, and for cause-
effect processes, notably those related to soil functions, 
which are still not fully understood and modeled. 

3. CONCLUSIONS 
LCA studies of oil palm systems and the derived 

products are frequently restricted by data gaps. Currently 
the knowledge on the influence of different management 
practices on the plantation and/or the palm oil mills reaches 
from fragmented to not existent. Examples are nutrient 
management, water level management on peat soils, pest 
control, residue treatment (EFB, POME and nutshells), 
energy efficiency in oil mills to name just a few.  

Consequently, the foremost challenges are to build a 
consensus-based modeling framework, to gather regional- 
and management-specific inventory data and define 
inventory models in order to estimate emissions and 
temporary carbon storage effects. Building a national LCA 
database for oil palm plantation and subsequent conversion 
processes would be a valuable asset. 

The accounting of land use impacts on soil is very 
critical for oil palms given i) the important challenge 
related to oil palm expansion and related land use changes 
and ii) the peculiarities of perennial crops compared to 
annual ones and due to the various and abundant recycled 
residues. Particularly impacts related to co-variations in the 
connected physico-chemical and biological soil properties 
and soil functions are hardly addressed in LCIA due to still 
limited knowledge. Several other environmental impact 
indicators (ecotoxicity, biodiversity, etc.) are still under 
development and consequently not fully matured. 

Peat drainage is required in order to grow oil palm on 
peat soil. Managing the water level is a serious challenge 
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and determines the release of GHG but also the risk for 
peat fires. The latter are extreme events and usually not 
considered in LCA. Given the experience of peat fires from 
1997 and 2013 these events have tremendous 
environmental and health effects that should be analyzed by 
properly defined scenarios. 

Spatially explicit methods and specific 
characterization factors for palm oil producing countries 
are needed in life cycle impact assessment to accurately 
quantify e.g. biodiversity impacts of processes related to 
and products derived from palm oil production systems. 
Moreover, current LCIA approaches hardly take rebound 
effects such as impact of climate change to biodiversity 
into account. 

Results have to be discussed with respect to the 
particular goal and scope of the study, which also defines 
the limitation of the analysis. Rebound effects and extreme 
events might determine the robustness of the obtained 
results. Such kind of limitations should be estimated by 
scenario analysis. It is highly recommended to support the 
final interpretation of results by sensitivity and uncertainty 
analyses.  
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