Life Cycle Assessment of electricity generation from Jatropha oil in a short chain in Mali

Authors

  • Leticia MENEGHEL FONSECA CIRAD, UPR AIDA, F-34398 Montpellier, France Univ Montpellier, CIRAD, Montpellier, France
  • Nawelle CHAOUKI Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro industrielle), F 31030 Toulouse, France CIRAD, UPR AIDA, F-34398 Montpellier, France Univ Montpellier, CIRAD, Montpellier, France
  • Anthony BENOIST CIRAD, UPR BioWooEB, F-34398 Montpellier, France Univ Montpellier, CIRAD, Montpellier, France
  • Guillaume BUSSET Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro industrielle), F 31030 Toulouse, France INRA, UMR 1010 CAI, F 31030 Toulouse, France
  • Roland PIROT CIRAD, UPR AIDA, F-34398 Montpellier, France Univ Montpellier, CIRAD, Montpellier, France
  • Mireille MONTRÉJAUD-VIGNOLES Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro industrielle), F 31030 Toulouse, France INRA, UMR 1010 CAI, F 31030 Toulouse, France
  • Caroline SABLAYROLLES Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro industrielle), F 31030 Toulouse, France INRA, UMR 1010 CAI, F 31030 Toulouse, France

Abstract

Jatropha curcas is an inedible oil crop which can grow under semiarid climatic conditions. Its oil can be used straight as fuel to provide energy in remote areas to improve living conditions. The aim of this study is to assess the environmental impacts of the electricity generation from Jatropha oil under West African conditions, by means of a Life Cycle Assessment (LCA). These potential impacts are calculated for four crop managements and compared to the ones of a reference electricity generation from conventional diesel. Data used in this work are from Jatropha plantations set up in Mali since 2006.

LCA results show that the potential benefits of the Jatropha systems are highly dependent on the crop management, especially for the fertilization strategy and the promotion of the oilcake. However, in all cases, the Jatropha systems have lower impacts than the reference diesel system by 75% to 96% for abiotic depletion, and by 80% to 97% for ozone layer depletion, and higher impacts by 260% to 1000% for eutrophication, and by 26% to 160% for acidification. In the best case, the Jatropha system can also have lower impacts than the reference system by 76% for climate change, and by 88% for photochemical oxidation.

A methodological originality of this work is the inclusion of animal and human labour into the LCA framework. A first model is proposed for the accounting of energy consumption and GreenHouse Gases (GHG) emissions due to labour. Concerning energy consumption, labour is not negligible with a share from 14% to 50% of the total impact of the Jatropha systems; however the highest share of 50% corresponds to the scenarios with the lowest energy demand. CH4 emissions from livestock are also not negligible but second-order in this study since they account for 2% to 13% of total GHG emissions.

References

Achten W (2010) Sustainability evaluation of biodiesel from Jatropha curcas L. – A life cycle oriented study. PhD thesis, Katholieke Universiteit Leuven, Heverlee, 200 pp.

Alam MS, Alam MR, Islam KK (2005) Energy Flow in Agriculture: Bangladesh. American Journal of Environmental Sciences, 1(3), 213–220. http://dx.doi.org/10.3844/ajessp.2005.213.220

Almeida J, Achten WMJ, Duarte MP, Mendes B, Muys B (2011) Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment. Environmental Science & technology, 45, 5447-5453. http://dx.doi.org/10.1021/es200257m

Arvidsson R, Persson S, Fröling M, Svanström M (2011) Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. Journal of Cleaner Production, 19, 129-137. https://doi.org/10.1016/j.jclepro.2010.02.008

Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16 (4), 6.1-6.13. https://doi.org/10.1029/2001GB001811

Chaouki N (2010) Le Jatropha : stratégie de développement durable en Afrique ? Le cas du Mali. Internship report, Université Paris Sud, 52 pp.

Cherubini F, Stromman AH (2011) Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technology, 102(2): 437-451. https://doi.org/10.1016/j.biortech.2010.08.010

CIRAD (2002) Mémento de l’agronome. CIRAD, GRET, Ministère des Affaires Etrangères, France, 1691 pp.

Davidson O, Sokona Y (2002) A new sustainable energy path for African development: Think bigger act faster. Energy and Development Research Centre, University of Cape Town, and Environmental Development Action in the Third World, Senegal, 74 pp.

de Klein C, Novoa RSA, Ogle S, Smith KA, Rochette P, Wirth TC (2006) Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: 2006 IPCC Guidelines for Greenhouse Gas Inventories – Volume 4: Agriculture, Forestry and Other Land Use (eds Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K), pp 11.1-11.54. IGES, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

de Souza PT (2010) Adubação NPK no crescimento e produção de pinhão manso. Mestrado thesis, Universidade Federal dos Vales do Jequetinhonha e Mucuri, Diamantina, 43 pp.

Drumond MA, Santos CAF, de Oliveira VR, Martins JC, dos Anjos JB, Evangelista MRV (2010) Agronomic performance of different genotypes of physic nut in the semi-arid zone of Pernambuco state. Ciência Rural, 40, 44-47. http://dx.doi.org/10.1590/S0103-84782009005000229

Edwards R, Larivé JF, Mahieu V, Rouveirolles P (2007) Well-to-Wheels analysis of future automotive fuels and powertrains in the European context. Well-to-Tank report, version 2c, JRC / EUCAR / CONCAWE, 140 pp. https://ec.europa.eu/jrc/en/jec/publications/archive-2007

Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91, 1-21. https://doi.org/10.1016/j.jenvman.2009.06.018

Gmünder SM, Zah R, Bhatacharjee S, Classen M, Mukherjee P, Widmer R (2010) Life cycle assessment of village electrification based on straight jatropha oil in Chhattisgarh, India. Biomass and Bioenergy, 34, 347–355. https://doi.org/10.1016/j.biombioe.2009.11.006

ISO (2006a) ISO 14040 - Environmental management - Life cycle assessment – Principles and framework. International Standard Organisation (ISO), Geneva, 34 pp.

ISO (2006b) ISO 14044 - Environmental management - Life cycle assessment - Requirements and guidelines. International Standard Organisation (ISO), Geneva, 60 pp.

Jolliet O, Saadé M, Crettaz P, Shaked S (2010) Analyse du cycle de vie : Comprendre et réaliser un écobilan. Presses Polytechniques et Universitaires Romandes, 302 pp.

Kaewcharoensombat U, Prommetta K, Srinophakun T (2011) Life cycle assessment of biodiesel production from jatropha. Journal of the Taiwan Institute of Chemical Engineers, 42, 454–462. https://doi.org/10.1016/j.jtice.2010.09.008

Kaushik N, Kumar K, Kumar S, Kaushik N, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass and Bioenergy, 31, 497–502. https://doi.org/10.1016/j.biombioe.2007.01.021

Lecomte P, Boval M, Guerin H, Ickowicz A, Huguenin J, Limbourg P (2004) Carbone et élevage de ruminants. In: Gestion de la Biomasse, Erosion et Séquestration du Carbone – 2. Séquestration du Carbone et Erosion des sols (eds Roose E, de Noni G, Prat C, Ganry F, Bourgeon G), pp 220-235. Bulletin du réseau Erosion n°23, Montpellier.

Liennard A (1995) Utilisation d’huile de Pourghère non estérifiée comme carburant des moteurs diesel. Unpublished report, CIRAD-SAR n°29.95, 44 pp.

Ndong R, Montréjaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha Curcas in West Africa: a field study. GCB Bioenergy, 1, 197–210. https://doi.org/10.1111/j.1757-1707.2009.01014.x

Nemecek T, Kägi T (2007) Life Cycle Inventories of Agricultural Production Systems. Ecoinvent report no. 15, Agroscope Reckenholz-Tänikon Research Station, Zürich and Dübendorf, 360 pp.

Nielsen PH, Hauschild M (1998a) Product Specific Emissions from Municipal Solid Waste Landfills – Part I: Landfill model. International Journal of Life Cycle Assessment, 3(3), 158-168. https://doi.org/10.1007/BF02978824

Nielsen PH, Exner S, Jorgensen AM, Hauschild M (1998b) Product Specific Emissions from Municipal Solid Waste Landfills – Part II: Presentation and Verification of the Computer Tool LCA-LAND. International Journal of Life Cycle Assessment, 3(4), 225-236.

Porcaro J, Takada M (2005) Achieving the Millennium Development Goals: The Role of Energy Services – Case studies from Brazil, Mali and the Philippines. United Nations Development Programme, New York, 81 pp.

Reinhardt G, Gärtner S, Rettenmaier N, Münch J, von Falkenstein E (2007) Screening life cycle assessment of Jatropha biodiesel. IFEU - Institute for Energy and Environmental Research Heidelberg GmbH, Heidelberg, 62 pp.

Sourie JC, Tréguer D, Rozakis S (2005) L’ambivalence des filières de biocarburants. INRA Sciences Sociales – Recherches en économie et sociologie rurales, Ivry, 8 pp.

von Braun J (2007) The world food situation – New driving forces and required actions. International Food Policy Research Institute, Washington, 27 pp.

Whitaker M, Heath G (2009) Life cycle assessment of the use of Jatropha biodiesel in Indian locomotives. National Renewable Energy Laboratory, Golden, 102 pp.

Wuebbles DJ, Jain AK (2001) Concerns about climate change and the role of fossil fuel use. Fuel Processing Technology, 71, 99–119. https://doi.org/10.1016/S0378-3820(01)00139-4

Yusoff S, Hansen SB (2007) Feasibility study of performing an Life Cycle Assessment on Crude Palm Oil production in Malaysia. International Journal of Life Cycle Assessment, 12(1), 50-58. https://doi.org/10.1065/lca2005.08.226

Published

2019-11-25

Issue

Section

Articles